Continuous Reflection

"If others would but reflect on mathematical truths as deeply and as continuously as I have, they would make my discoveries." - Carl Friedrich Gauss

Trigonometric storytelling, Part 1

We’ve just had a good week-plus of precalculus lessons built around a story, inspired by Daniel Willingham’s tweet and the article by Julie DeNeen about which he tweeted.

[embedit snippet=”willingham-tweet”]

The tweet came at an opportune time. It was Thanksgiving break, I was away from home, and didn’t have much that needed to get done for a couple of days, so I felt like I had the time to be creative. The upcoming topic in precalculus was the unit circle, so I decided to see if I could come up with an appropriate story. (I have a colleague who tells a unit circle story about a cockroach, which gave me hope that I, too, could develop a story on this theme.) Over the course of the long Thanksgiving weekend I figured out the basic plot and developed the details of the opening act, which I would tell in our first class after Thanksgiving. The students would need a couple of class periods to do some work on the ideas introduced in this first act, and so I had a few more days to develop the details for the end.

We have one 75-minute period each week and three 45-minute periods. We returned to school after Thanksgiving on Tuesday, when we have our 75-minute period. The storytelling this day took about 5 minutes. Here’s the part of the story that I told on that day:

This is Girt:

Ever since Girt was a sweet little baby worm, she had lived in the Land of Dirt, and she had been happy there. But in her teenage years, Girt began to get restless and wanted to see more of the world. She had heard of a magical land far away called Cartesia. [Note: At this point exactly one student groaned aloud. Others wondered why she had groaned. “Is that a real place?” “Is that somewhere we should have heard of?” “Does it have something to do with math?” A tiny bit unsure of herself at this point the groaner said, “You know . . . the Cartesian plane?” Someone asked what that was. The groaner ventured, “Isn’t it . . . a two dimensional plane? I’m not sure.” The hubbub subsided and I continued.]
Anyway, Girt decided to venture out to find Cartesia. After days and days of crawling along, Girt saw off in the distance–like Dorothy approaching Oz–a greenish glow. Eventually she arrived at the green, and found that it covered the ground. She wriggled all around in the green stuff, reveling in the way it felt against her skin. [“It’s grass!”, a listener announced.] As she was wriggling along, she discovered, to her delight, tiny flowers sprinkled among the green stuff. She was hungry after her long journey and decided to taste one. The flowers were not only beautiful, they were delicious. Joyfully and eagerly, Girt wriggled around searching out and eating these foreign delicacies.
So intent was she on finding the flowers, that Girt didn’t pay any attention to where she was going and suddenly–SMACK–she ran into something big and hard. Ouch. To her further dismay, she found that this big hard thing was covered with something very sticky and she was stuck tight to this thing. Girt thought of crying, but decided there was nothing to be gained by that. She discovered that she could still wriggle a bit while attached to this thing, and as she wriggled, she realized that she could even still move along the ground, and the big heavy thing moved with her. She found that when she stretched as far as she was able, she could just see around the edge of it. While it was only a little bigger than her at the place she was stuck, it extended far off into the distance. She found that she was stuck to one end of a long rod and the other end was attached to a post, on which the rod pivoted as she inched along. All was not lost! Girt decided to make the best of the situation. She continued to delight in the feel of the green stuff on her skin and she inched off in search of whatever flowers she could find despite being stuck to the rod.

At this point, I stopped and, ignoring pleas to go on, announced that we were going to need to do some work before I could finish the story. I broke the students up into pairs (by giving half of the students cards with graphs of parabolas and the other half equations of those parabolas and telling them to find their mates) and distributed a handout. I pointed out that the handout listed the locations of some flowers in relation to the post on which Girt’s rod pivoted and asked each pair to determine which of these flowers Girt would be able to reach.

The pairs dove into the task. A few asked some clarifying questions. They started to visualize the situation and realized the task amounted to figuring out whether the points given fell on a circle. I told them they had to work without calculators until they’d made decisions about all of the flowers except those whose coordinates were given as decimals. Everyone was able to make some decisions fairly quickly about a few of the points, but it was not immediately obvious to the vast majority about how to proceed for most of the points. One pair asked for a compass. Several pairs decided to approach it entirely with graph paper and circles sketched without the aid of a compass. Several pairs recognized that the equation of a circle would be helpful, but couldn’t remember what it was and, when I wouldn’t tell anyone what it was, most abandoned that tack. A couple of individuals were able to come up with the equation for a circle and they made rapid progress (as did some nearby pairs who were listening in when they sensed progress from others). I overheard still others saying things like “Can they both be under 1?” and “If this one’s close to 1, the other one has to be close to 0.”

While most students in the class had no previous experience with the unit circle, a few did, and most of these–sooner or later–realized there was a connection of some sort. One of those had a good enough grasp of the unit circle already that he and his partner (who, was incidentally, the groaner mentioned above) made a lot of progress early on (and the groaner asked before long, “Oh–are the Cartesian plane and the x-y plane the same thing?”) Another who had some recollection of the unit circle from his math class last year called across the room to a student who had been in class with him last year, “Do you remember that circle thing we did last year?” His friend replied, “I remember NOTHING from last year!” In a couple of cases when I sensed that a pair had made a good amount of progress, but was starting to reach a stage of frustration, I encouraged them to draw a right triangle for one of the flowers that they had determined was on the circle and to think about the Pythagorean Theorem. For most who needed help, this was sufficient to spur them to the understanding that they needed to check whether the sum of the squares of the coordinates was 1, and from there they were able to make rapid progress.

While some finished determining which flowers Girt could reach much earlier than others, the final question on the handout about how far she had to travel to reach each flower kept those who finished early very engaged until everyone had an opportunity to determine which flowers Girt could reach. The question about how far she had to travel made people grapple with the difference between location and path length. A typical conversation between partners went like this,

“What are we trying to figure out now?”

“How far she went to get to the flower.”

“But we know how far she went.”

“We know the coordinates, but we don’t know how far she went to get there.”

By the end of about an hour, everyone had spent some time on this final question. Around this point, I passed near a pair and was flagged down, “Laura, why do you do this to us?” “What?” “Make us think!” I walked past another pair and overheard “Oh, that makes sense! When she’s due west, it’s 3.14.” When everyone figured out, at a minimum, that Girt had to travel π rod-lengths to get from her starting point 1 rod east of the post to the flower that was 1 rod west of the post, I sent everyone to the board and asked each pair to write three observations, things they had discovered, or things that would have been helpful to know. Here’s what they wrote

 

Not perfect, but–wow–had they discovered a lot in an hour! Finally, I scrambled the pairs, and asked new partners to check their results about which flowers Girt could reach. One pair wrote their agreed-upon results on the board and I asked for objections to any of the results. One person objected to several of the posted answers, but others were ready to defend all of the posted answers vigorously. I asked the objector if she happened to be from the pair who had used inequalities in the observations they had written on the board. When she said yes, I explained that Girt was stuck to the very tip of an inflexible rod, and she immediately said, “Oh, we misinterpreted the problem” and, after looking at her calculations in light of this new information, withdrew her objections.

As we ran out of time, while all were eager to get to lunch, several couldn’t believe that they weren’t going to get to hear the end of the story yet, and even after 75 minutes of math, would have been willing to stick around a few more minutes to hear it. I told them we weren’t finished all the work we needed to do before we could get to the end.

–“How are we going to be able to sleep with poor Girt stuck to that rod?”

–“I guess you’ll just have to come back tomorrow!”

I can’t be sure that they know any of this better than they would have if we’d covered the same concepts without a story, but they’ve left me with the impression that they do. It’s obvious, at least, that they did virtually all of the abstraction on their own. I just told them that a worm (about whom they’d come to care a bit) was stuck to a rod, and then introduced the familiar abstraction of North/South and East/West coordinates for a bunch of flowers. Then they worked hard for an hour and were able to articulate important ideas related to the unit circle. There is absolutely no question in my mind that the narrative made most of them more interested and willing to play along than they otherwise might have been.

(I will post about the classes that followed–and tell the end of the story–before too long, I hope.)

 

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.